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Abstract As of 2023, it is estimated that 6.7 mil-
lion individuals in the United States live with Alz-
heimer’s disease (AD). Prior research indicates that 
AD disproportionality affects females; females have 
a greater incidence rate, perform worse on a vari-
ety of neuropsychological tasks, and have greater 
total brain atrophy. Recent research shows that hip-
pocampal functional connectivity differs by sex and 
may be related to the observed sex differences in 
AD, and apolipoprotein E (ApoE) ε4 carriers have 

reduced hippocampal functional connectivity. The 
purpose of this study was to determine if the ApoE 
genotype plays a role in the observed sex differences 
in hippocampal functional connectivity in Alzhei-
mer’s disease. The resting state fMRI and T2 MRI 
of individuals with AD (n = 30, female = 15) and 
cognitively normal individuals (n = 30, female = 15) 
from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) were analyzed using the functional con-
nectivity toolbox (CONN). Our results demonstrated 
intrahippocampal functional connectivity differed 
between those without an ε4 allele and those with at 
least one ε4 allele in each group. Additionally, intra-
hippocampal functional connectivity differed only by 
sex when Alzheimer’s participants had at least one 
ε4 allele. These results improve our current under-
standing of the role of the interacting relationship 
between sex, ApoE genotype, and hippocampal func-
tion in AD. Understanding these biomarkers may aid 
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in the development of sex-specific interventions for 
improved AD treatment.

Keywords Alzheimer’s disease (AD) · Sex 
difference · Apolipoprotein E · Functional 
connectivity

Introduction

The 2023 estimate of Americans over the age of 65 
living with Alzheimer’s disease (AD) is 6.7 million 
[1]. AD is currently the fifth leading cause of death 
for those older than 65  years living in the United 
States [2, 3]. Alzheimer’s disease disrupts com-
munication, metabolism, and repair of neurons and 
their networks [4]. It is characterized by abnormal 
levels of amyloid plaques, neurofibrillary tangles, 
chronic inflammation, and vascular dysfunction [4, 
5]. Individuals with AD develop memory impair-
ments that severely impact daily life. AD dispro-
portionately affects females, as the prevalence of 
AD is two-thirds higher in women than men [2, 3]. 
Additionally, compared to males with AD, females 
perform poorer on a variety of neuropsychologi-
cal tasks and have greater total brain atrophy and 
temporal lobe degeneration [6–8]. Theories for the 
sex-biased differences in AD include sex-specific 
developmental factors such as hormonal differences 
and menopause and hypertensive disorders of preg-
nancy [9–12]. Additionally, differences have been 
linked to sex differences in known risk factors, such 
as age, depression, education level, and sleep [11, 
13]. The independent contributions of cognitive and 
genetic risk factors for AD have received consider-
able attention; however, their interactions are less 
known.

Previous work has shown a possible interaction 
between sex and a known genetic risk factor for 
AD, the apolipoprotein E ε4 allele (ApoE-4). In 
humans, ApoE exists in three different isoforms, 
ε2, ε3, and ε4. The expression of ApoE isoforms 
and AD is multifactorial; a recent finding showed 
that an ε2 allele robustly decreases late-onset AD, 
whereas the expression of one ε4 allele increases 
the risk of developing AD, and the expression 
of two ε4 alleles increases the risk 9–15-fold 
[14–16]. The ApoE-4 is expressed in more than 
half of AD patients [17]. The presence of the 
ApoE-4 is known to cause numerous structural 
and functional brain changes associated with AD, 
including amyloid-β mechanisms, synaptic plastic-
ity, cholesterol homeostasis, neurovascular func-
tion, and neuroinflammation [18–20]. Functional 
connectivity (FC) studies using electroencepha-
lography (EEG) have shown that ApoE-4 is associ-
ated with functional network disruptions [21, 22]. 
However, the ApoE-4 role in the sex differences of 
AD is still being debated as the current results are 
inconsistent [18, 23–25].

Recently, research has revealed that hippocam-
pal FC may be a biomarker and contributing factor 
in sex differences. Hippocampal atrophy has been 
found to be significantly faster and affect the pro-
gression of AD only in females [26, 27]. Addition-
ally, previous studies have shown that females with 
AD have overall weaker hippocampal FC compared 
to males [28–31]. Further, previous work by Heise 
et. al has shown that in cognitively normal (CN) 
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females, ApoE-4 carriers have reduced hippocampal 
FC to the precuneus and posterior cingulate cortex 
[32]. The purpose of this study was to build upon 
this prior research and determine if the ApoE geno-
type plays a role in the observed sex differences in 
functional connectivity of the hippocampus.

Methods

Data source

The data for this study were extracted from the 
ADNI [33], which is a publicly accessible dataset 
available at http:// adni. loni. usc. edu. Launched in 
2003, ADNI is a longitudinal, multi-site, cohort 
study, led by Principal Investigator Michael W. 
Weiner, MD. The original study, ADNI-1, has been 
extended three times, and the database contains 
subject data from ADNI-1, ADNI-GO, ADNI-2, 
and ADNI-3. The overall goal of the studies was to 
evaluate whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the 
progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD). For up-to-date 
information, see www. adni- info. org.

Participant selection

The data were filtered for participants with AD. 
Participant selection was limited to those with 
data collected from resting-state functional mag-
netic resonance imaging (rs-fMRI) and 3-Tesla 
T2 magnetic resonance imaging. Additionally, the 
data had to include the ApoE genotype. To maxi-
mize the sample size, participants were selected 
from any visit to ADNI-GO, ADNI-2, and ADNI-
3. These cohorts used the same protocol to col-
lect resting state data. A Philips system was used 
to collect straight axial rs-fMRI; the participants 
had their eyes open for the entire scan with their 
heads positioned on the mid-sagittal slice from 
the tri-planar scout. This process was repeated for 

cognitively normal (CN) individuals. Filtering the 
data resulted in a total of 17 AD females, 15 AD 
males, 28 CN females, and 22 CN males. To bal-
ance the number in each group, 15 of each group 
were computer randomly selected. Averages and 
standard deviation of available participant demo-
graphics of participants are provided in Table 1.

Analysis of functional connectivity

The participant’s original rs-fMRI and MRI images 
(NiFTI format) were imported into the NITRC Func-
tional Connectivity Toolbox (CONN) version 20b 
[34]. CONN utilizes SPM12 (Welcome Department 
of Cognitive Neurology, UK) and MATLAB R2020a 
(MathWorks, Natick, MA, USA) in its processes and 
by default a combination of the Harvard–Oxford atlas 
(HOA distributed with FSL http:// www. fmrib. ox. 
ac. uk/ fsl/) [35–37] and the Automated Anatomical 
Labeling (AAL) atlas [38].

The images were processed through the default 
functional and structural preprocessing pipeline 
as detailed by Nieto-Castanon [39]. This included 
realignment, slice timing correction, coregistra-
tion/normalization, segmentation, outlier detection, 
and smoothing. Additionally, this step extracted 
the blood-oxygen-level dependent (BOLD) time 
series from the regions of interest (ROIs) (using 
the Harvard–Oxford cortical regions) and at the 
voxels. Next, the images were denoised to remove 
confounding effects from the BOLD signal through 
linear regression and band-pass filtering. This 
removes unwanted motion, physiological, and other 
artifactual effects from the BOLD signal before 
computed connectivity measures. The system 
used a combination of aCompCor (White and CSF 
ROIs, five components each), scrubbing (as many 

Table 1  Participant genotypes (AD, Alzheimer’s disease; CN, 
cognitively normal)

Genotype ε2ε3 ε2ε4 ε3ε3 ε3ε4 ε4ε4

AD female 0 0 3 9 3
AD male 2 0 3 6 4
CN female 2 1 6 5 1
CN male 1 0 9 5 0

http://adni.loni.usc.edu
http://www.adni-info.org
http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
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regressors as identified invalid scans), motion 
regression (12 regressors: 6 motion parameters + 6 
first-order temporal derivatives), and filtering. A 
quality assurance check was made after the denois-
ing to ensure normalization and that there were no 
visible artifacts in the data.

A seed-to-voxel analysis was conducted for each 
participant. This analysis created a seed-based con-
nectivity (SBC) map between the ROI (left or right 
hippocampus) to every voxel of the brain. The SBC 
map is computed as the Fisher-transformed bivariant 
correlation coefficients between the ROI BOLD time 
series and each individual voxel BOLD time series 
[34]. The mathematical relationship to construct the 
SBC is:

where R is the average ROI BOLD time series in 
the hippocampus, S is the BOLD time series at 
each voxel, r is the spatial map of Pearson cor-
relation coefficients, and Z is the SBC map of the 
Fisher-transformed correlation coefficients for the 
ROI.

Statistical analysis

IBM SPSS (IBM Corp. Armonk, NY, USA) was 
used to run independent t-tests on the available 

r(x) =
∫ S(x,t)R(t)dt

(∫ R2(t)dt ∫ S2(x,t)dt)
1∕2

Z(x) = tanh−1(r(x))

participant data to ensure there was not a statisti-
cally significant sex difference in age, the Mini 
Mental State Examination (MMSE), the Geriat-
ric Depression (GD) Scale, the Global Clinical 
Dementia Rating (CDR), the Functional Activities 
Questionnaire (FAQ), and the Neuropsychiatric 
Inventory Questionnaire (NPI-Q) (p > 0.05). If nor-
mal distribution could not be assumed based on the 
Shapiro–Wilk test, a non-parametric Mann–Whit-
ney test was performed.

F-tests were conducted between the SBC maps 
to compare differences between groups. Female 
AD participants with at least one ε4 allele SBC 
maps were compared to Male AD participants with 
at least one ε4 allele SBC maps. This was repeated 
for female and male AD participants with no ε4 
allele. Additionally, female AD with at least one 
ε4 allele were compared to females without a ε4 
allele, and this was repeated with males. Finally, 
similar comparisons were made with CN partici-
pants. For a cortical area to be considered signifi-
cant, the toolbox used the Gaussian random field 
theory parametric statistics, with a cluster thresh-
old p < 0.05 (FDR-corrected) and voxel threshold 
p < 0.001 (uncorrected) to control the type I error 
in multiple comparisons [40]. Due to the small 
size of the voxel, to reduce differences attributed 
to noise, the area must be over 100 voxels large 
or cover more than 80% of a given atlas (specific 
brain area). These regions of statistical difference 

Table 2  Participant demographics (AD, Alzheimer’s disease; 
CN, cognitively normal; MMSE, Mini Mental State Examina-
tion; GD Scale, Geriatric Depression Scale; CDR, Global Clin-

ical Dementia Rating; FAQ, Functional Activities Question-
naire; NPI-Q, Neuropsychiatric Inventory Questionnaire)

Group Statistic Age MMSE GD Scale CDR FAQ NPI-Q

AD female μ ± SD 71.6 ± 8.6 20.9 ± 3.9 1.5 ± 2.1 0.91 ± 0.20 19.1 ± 6.3 4.6 ± 2.9
% missing 0 26 33 26 26 26

AD male μ ± SD 74.5 ± 5.2 22.3 ± 2.5 2.0 ± 1.0 0.91 ± 0.42 15.8 ± 7.6 4.5 ± 4.9
% missing 0 20 20 20 20 20

AD between sex t-tests p = 0.267 p = 0.341 p = 0.500 p = 0.956 p = 0.261 p = 0.932
CN female μ ± SD 71.5 ± 4.2 29.47 ± 0.8 0.93 ± 1.2 0.04 ± 0.13 0.0 ± 0 0.64 ± 1.4

% missing 0 0 0 6 6 6
CN male μ ± SD 75.9 ± 6.7 28.2 ± 2.0 0.6 ± 0.83 0.07 ± 0.18 0.33 ± 1.1 0.73 ± 1.4

% missing 0 0 0 0 0 0
CN between sex t-tests p = 0.060 p = 0.080 p = 0.370 p = 0.600 p = 0.240 p = 0.860



GeroScience 

1 3
Vol.: (0123456789)

Fig. 1  Seed-based functional connectivity map where functional connectivity differs from zero with the right hippocampus selected 
as ROI
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between SBC maps were then highlighted on a 
template brain.

Results

Table  1 displays the number of each genotype per 
group. Table  2 displays participant demograph-
ics with statistical analysis to ensure there were no 
significant sex differences in covariates. The SBC 
maps for each group with the right hippocampus 
selected as the ROI are displayed in Fig.  1, this 
depicts areas of the brain where the functional con-
nectivity differs from zero, with positive in red and 
negative in blue. Figure 1 demonstrates that there is 
connectivity within the data before performing sta-
tistical analysis between SBC maps.

For each group (female AD, male AD, female 
CN, and male CN), when the right and left hip-
pocampi were selected as the ROI, the functional 
connectivity within the right and left hippocampus, 
respectively, had a significant difference between 
individuals who have a least one ε4 compared to 

those who did not have a ε4 allele with those with 
no ε4 allele having higher functional connectivity 
(Table 3). This can be visualized for the right hip-
pocampus ROI in Fig. 2.

With regard to sex in the AD and CN groups, 
the only difference found was between females 
and male with AD who have at least one ε4 allele 
(Table 4). There were no significant sex differences 
for those with no ε4 allele or between cognitively 
normal individuals. When the right and left hip-
pocampus were selected as the ROIs (for those with 
AD that have at least one ε4 allele), the functional 
connectivity within the right and left hippocampus, 
respectively, has a significant between-sex group 
difference with males having higher functional con-
nectivity. This is visualized in Fig. 3. For the right 
hippocampus ROI, males averaged a connectivity 
within the right hippocampus of 0.434; the female 
average was 0.387. For the left hippocampus ROI, 
males averaged a connectivity within the left hip-
pocampus of 0.543; the female average was 0.353. 
The functional connectivity values for AD subjects 
with at least one ε4 allele are provided in Fig. 4.

Table 3  Hippocampal functional connectivity differences between genotypes

a The area is large enough to be statistically significant

Comparison N ROI Brain areas (atlas) of 
significant difference

% atlas covered # of voxels

Female (F): Alzheimer’s disease (AD) ε4 
vs. no ε4

F ε4 = 12 Right hippocampus Right  hippocampusa 29% 205
Left hippocampus 0% 0

Female (FMCI vs. FCN) F no ε4 = 3 Left hippocampus Left  hippocampusa 18% 138
Right hippocampus 0% 0

Male (M): AD ε4 vs. no ε4 M ε4 = 10 Right hippocampus Right  hippocampusa 25% 172
Left hippocampus 3% 22

M no ε4 = 5 Left hippocampus Left  hippocampusa 22% 168
Right hippocampus 3% 20

F: cognitively normal (CN) ε4 vs. no ε4 F ε4 = 7 Right hippocampus Right  hippocampusa 17% 122
Left hippocampus 0% 0

Female (FMCI vs. FCN) F no ε4 = 8 Left hippocampus Left  hippocampusa 28% 215
Right hippocampus 0% 0

M: CN ε4 vs. no ε4 M ε4 = 5 Right hippocampus Right  hippocampusa 19% 131
Left hippocampus 1% 10

M no ε4 = 10 Left hippocampus Left  hippocampusa 18% 140
Right hippocampus 2% 12
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Discussion

This study supports that there are sex differences 
in cortical pathophysiological biomarkers in AD. 
Specifically, this research expands the current 
understanding of intrahippocampal communication, 

demonstrating that the ApoE ε4 allele may play a 
role in the observed sex differences in hippocampal 
functional connectivity in AD.

Our finding that resting-state FC differs between 
those with an ε4 allele versus those without an ε4 
allele is consistent with previous research. Several 

Fig. 2  Hippocampal functional connectivity difference between individuals with an ε4 allele versus those without ε4 allele with 
right hippocampus as ROI. Highlighted display the statistically significant cortical regions (p < 0.001)
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studies have reported that the ApoE ε4 allele is 
associated with decreased FC in cognitively normal 
adults as well as in mouse models [41–45]. In AD, 
the ApoE ε4 allele is shown to change both struc-
tural and functional characteristics, specifically 
within the hippocampus [46, 47]. It is also known 
that intrahippocampal functional hippocampal con-
nectivity is decreased in Alzheimer’s compared to 
controls [48, 49]. This has also been demonstrated 
in 3xTg mouse models [48]. This difference may 
be a direct decrease, or there may also be in com-
pensatory pathways of the hippocampus. Research 
has shown that there is a generation of maladaptive 
compensatory mechanisms associated with AD [50, 
51]. Further, this difference in hippocampal com-
munication may also differ between females and 
males with AD [28, 29]. However, the novel finding 
of this research is the possibility that this sex differ-
ence may be linked to an interacting genetic factor, 
ApoE.

The sex difference in hippocampal FC was only 
observed between participants that had AD and had 
at least one ApoE ε4 allele. Comprehensive studies 

have shown that ApoE ε4 carriers have atrophic hip-
pocampal volumes and that the sex modulates the 
ApoE-related decrease in both gray and white mat-
ter activity [52, 53]. However, how ApoE is related 
to the difference in hippocampal FC between males 
and females remains unknown. ApoE ε4 has been 
shown to modulate neurodegeneration in a sex-spe-
cific manner, with females having a stronger asso-
ciation between ApoE and tau levels and amyloid-β, 
particularly in the presence of amyloidosis [54, 55]. 
Therefore, one hypothesis may be that ApoE affects 
tau protein aggregates or amyloidogenic processes 
differently, which is then playing a role in discon-
necting the hippocampus from specific memory 
systems resulting in worse neuropsychological 
task performance seen in females [8, 56]. Another 
hypothesis is related to the female endocrine and 
reproductive history. It could be that the observed 
sex differences in functional connectivity are the 
result of the activation effects of cycling hormones 
in women prior to menopause. It is known that 
across the menstrual cycle, there is gray matter 
plasticity in the hippocampal, the amygdala, and the 

Table 4  Hippocampal functional connectivity differences between sexes

a The area is large enough to be statistically significant

Comparison N ROI Brain areas (atlas) of 
significant difference

% atlas covered # of voxels

Alzheimer’s disease (AD) ε4: female (F) vs. male 
(M) (FMCI vs. FCN)

F = 12 Right hippocampus Right  hippocampusa 33% 228
Left hippocampus 0% 0

M = 10 Left hippocampus Left  hippocampusa 39% 250
Right hippocampus 1% 5

AD ε3: F vs. M F = 3 Right hippocampus Right hippocampus 1% 5
Left hippocampus 0% 0

M = 5 Left hippocampus Left hippocampus 1% 3
Right hippocampus 0% 0

Cognitively normal (CN) ε4: F vs. M (FMCI vs. 
FCN)

F = 7 Right hippocampus Right hippocampus 2% 11
Left hippocampus 0% 0

M = 5 Left hippocampus Left hippocampus 3% 30
Right hippocampus 1% 4

CN ε3: F vs. M F = 8 Right hippocampus Right hippocampus 5% 38
Left hippocampus 0% 0

M = 10 Left hippocampus Left hippocampus 6% 48
Right hippocampus 0% 0
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temporal and parietal regions of the brain [57]. One 
could observe if functional connectivity in women 
who had hysterectomies or hormone therapy is 
more similar or different from men.

Further, there are other biological and gen-
der considerations regarding ApoE and aging. 
The ApoE ε4 allele has been shown to have a 
large impact on stress response–related processes, 
including a strong interconnection between mito-
chondrial function, endoplasmic reticulum stress, 
synaptic integrity, and the immune response [58, 
59]. In addition to AD, the ApoE genotype is 
related to the severity of other proteinopathies and 
neurodegenerative diseases characterized by overt 
neuroinflammation [60]. These include multiple 

sclerosis, Parkinson’s, dementia with Lewy bodies, 
and amyotrophic lateral sclerosis. These conditions 
also have reported sex differences in both develop-
ment and progression [61]. The study of sex dif-
ferences in these different neurological conditions, 
including AD, is significant as it could lead to an 
understanding of the molecular underpinning of 
ApoE and further the advancement of precise treat-
ment based on sex.

It should be noted that the sample size of this 
study was small, and the cross-sectional design 
further constrains conclusions about the nature of 
change in hippocampal activity over time. Future 
work should include longitudinal designs to track 
these changes in larger samples to provide more 

Fig. 3  Hippocampal functional connectivity difference between females and males with AD who have an ε4 allele. Highlighted dis-
play the statistically significant cortical regions (p < 0.001)
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robust statistical power and a more representative 
spectrum of the AD population. The sample size 
(that was limited by fMRIs available on the ADNI 
database) also did not allow for separating the 
genotypes further, for example, observing the dif-
ferences between homozygous and heterozygous 
ApoE ε4 carriers or exploring the differences that 
may emerge with ApoE ε2. Further, our analysis 
included the uneven distribution of heterozygotes 
and homozygotes across sexes, most significantly 
within the AD group with at least one ApoE ε4 
allele. With an increased number of participants, 
the number in each group would be equalized to 
ensure this is not a confounding variable. With an 
increased number of participants to allow for larger 
groups, this future work would strengthen the study 
of sex, ApoE, and functional connectivity of the 
hippocampus. Additionally, exploring the molecular 

underpinning of ApoE including a study with tau 
or amyloid-β levels would provide an indication 
of their role in changes to connectivity. Another 
important future work would be focusing on the 
effects of the female reproductive cycle. Neverthe-
less, the current finding supports accounting for 
sex and ApoE genotype in neuroimaging biomark-
ers, diagnostics, and treatments. Additionally, it 
furthers the rationale for the development of sex-
specific interventions using the emerging cortical 
pathophysiological biomarkers, such as non-inva-
sive brain stimulation (NIBS) to optimize therapeu-
tic outcomes [62, 63]. The prospect of sex-specific 
interventions also calls for a deeper examination of 
the socio-cultural dimensions of AD. Gender roles 
and environmental factors may exacerbate or miti-
gate expressions of genetic risk, which warrants 
consideration in research and clinical settings.

Fig. 4  Functional connectivity of right hippocampus ROI to the right hippocampus and left hippocampus ROI to the left hippocam-
pus in AD participants with at least one ε4 allele
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